Does Median Filtering Truly Preserve Edges Better than Linear Filtering ?
نویسنده
چکیده
Image processing researchers commonly assert that “median filtering is better than linear filtering for removing noise in the presence of edges.” Using a straightforward large-n decision-theory framework, this folk-theorem is seen to be false in general. We show that median filtering and linear filtering have similar asymptotic worst-case meansquared error (MSE) when the signal-to-noise ratio (SNR) is of order 1, which corresponds to the case of constant per-pixel noise level in a digital signal. To see dramatic benefits of median smoothing in an asymptotic setting, the per-pixel noise level should tend to zero (i.e., SNR should grow very large). We show that a two-stage median filtering using two very different window widths can dramatically outperform traditional linear and median filtering in settings where the underlying object has edges. In this two-stage procedure, the first pass, at a fine scale, aims at increasing the SNR. The second pass, at a coarser scale, correctly exploits the nonlinearity of the median. Image processing methods based on nonlinear partial differential equations (PDEs) are often said to improve on linear filtering in the presence of edges. Such methods seem difficult to analyze rigorously in a decision-theoretic framework. A popular example is mean curvature motion (MCM), which is formally a kind of iterated median filtering. Our results on iterated median filtering suggest that some PDE-based methods are candidates to rigorously outperform linear filtering in an asymptotic framework.
منابع مشابه
تشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملA New Iterative Fuzzy-Based Method for Image Enhancement (RESEARCH NOTE)
This paper presents a new filtering approach based on fuzzy-logic which has high performance in mixed noise environments. This filter is mainly based on the idea that each pixel is not allowed to be uniformly fired by each of the fuzzy rules. In the proposed filtering algorithm, the rule membership functions are tuned iteratively in order to preserve the image edges. Several test experiments we...
متن کاملStandard median filter pdf
Further, a technique known as adaptive decision based filtering is proposed and applied.filter to the recently developed theory of optimal weighted median filtering. Weighted median filters for image and image sequence restora.Abstract A new median-based filter, progressive switching median. Index Terms Image enhancement, impulse detection, median filter, nonlinear filter.shown that relaxed med...
متن کاملAn Improvement of Steerable Pyramid Denoising Method
The use of wavelets in denoising, seems to be an advantage in representing well the details. However, the edges are not so well preserved. Total variation technique has advantages over simple denoising techniques such as linear smoothing or median filtering, which reduce noise, but at the same time smooth away edges to a greater or lesser degree. In this paper, an efficient denoising method bas...
متن کاملGeological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering
This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006